
Fractions

Let's take a look at how Scheme can be used to implement data
structures. For our first example we will implement an easy
datatype -- Fractions.

First, how should we represent a fraction, such as 3/4?

An obvious solution is to use the pair (3 4) to represent 3/4.

This leads to some easy definitions:

(define make-rat (lambda (num denom)
 (list num denom)))

(define num (lambda (r)
 (car r))

(define denom (lambda (r)
 (cadr r))

(define rat+ (lambda (r1 r2)
 (make-rat (+ (* (num r1) (denom r2)) (* (num r2) (denom r1)))
 (* (denom r1) (denom r2)))))

This works but if you add 1/2 and 1/2 this says the answer is (4
4), which we would write as the fraction 4/4.

A better solution is to improve our make-rat procedure, so it
reduces the fraction "to lowest terms":

(define make-rat (lambda (a b)
 (let ([g (gcd a b)])
 (list (/ a g) (/ b g)))))

Now the result of
(rat+ (make-rat 1 2) (make-rat 1 2)) is (1 1)

It is easy to go from here to a full implementation of fractions, with
+, -, *, / operators.

See the file fractions.rkt

One thing to notice here is the print-rat procedure:

(define print-rat (lambda (r)
 (printf "~s/~s" (num r) (denom r))))

This is analogous to print "%d %d\n" %(num(r), denom(r)) in
Python

or printf("%d %d\n", num(r), num(r)) in Java.

The first argument to printf is a format string; the remaining
arguments give values for the ~s placeholders.

Using the pair (a b) to represent the fraction a/b is an obvious
choice, but not the only choice. Here is another way to represent
fractions:

(define make-rat (lambda (a b)
 (let ([g (gcd a b)])
 (lambda (s)
 (cond
 [(eq? s 'num) (/ a g)]
 [(eq? s 'denom) (/ b g)]
 [else 'error])))))

(define num (lambda(r) (r 'num)))
(define denom (lambda (r) (r 'denom))))

